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We present an accurate method to include arbitrary singular distributions of forces in the lattice Boltzmann
formulation of hydrodynamics. We validate our method with several examples involving Stokeslet, stresslet,
and rotlet singularities, finding excellent agreement with analytical results. A minimal model for sedimenting
particles is presented using the method. In the dilute limit, this model has accuracy comparable to, but
computational efficiency much greater than, algorithms that explicitly resolve the size of the particles.
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I. INTRODUCTION

The numerical integration of the discrete-velocity Boltz-
mann equation provides an efficient method for the solution
of isothermal, incompressible fluid flows in complex geom-
etries �1�. The finite-difference equation generated by the in-
tegration scheme is referred to as the lattice Boltzmann equa-
tion �LBE�. The method can be extended to study multiphase
�2,3� and multicomponent �4� flows, the hydrodynamics of
polymers �5� and suspensions �6,7�, and flows under gravity
�8�. In these extensions of the LBE, the resulting momentum
balance equations contain additional terms beyond the usual
pressure and viscous forces. These represent forces acting on
the fluid, either from external sources like gravity, or internal
sources like the gas-liquid interface in a two-phase fluid.

The LBE, derived as it is from the Boltzmann equation
for a dilute gas, can only faithfully represent the hydrody-
namics of a fluid with an ideal-gas equation of state and a
Newtonian constitutive equation �9�. One way around this
restrictive situation is to use the forced Boltzmann equation
to represent the additional forces that appear in the exten-
sions described above �1�. So far, this idea has been used
mainly to model the effects of gravity �8� and gas-liquid
interfacial forces in nonideal gases �3�. These correspond to
two special types of force distribution: in the case of gravity,
the force is spatially and temporally constant, while in the
case of the gas-liquid interface, the force varies both in space
and time, but is evaluated only on the nodes of the compu-
tational grid. The forces in either case are smooth functions
of position.

However, many models of boundaries immersed in fluids
require singular distributions of forces. Such a description
follows, for example, when a gas-liquid interface is de-
scribed as a two-dimensional manifold of zero thickness in-
stead of a three-dimensional volume of space where the den-
sity changes rapidly. In a similar mathematical idealization, a
polymer in a fluid may be represented as a one-dimensional
curve with a singular distribution of forces �10�. In yet an-
other example, at distances large compared to its radius, a
sedimenting colloid can be well approximated as a singular
point force �11�. Clearly, the range of applications of lattice
Boltzmann hydrodynamics can be greatly expanded if singu-
lar force densities, not necessarily located at grid points, can
be incorporated into the method.

In this paper we address the inclusion of singular force
densities. To do this, we first present a derivation of various
results �largely available elsewhere� on how to incorporate
forcing distributions that are smooth on the lattice scale. We
then marry these to an established procedure for representing
singular distributions, such as the � function, on the lattice.
Unless the singularity coincides with a lattice site, any inter-
polation of a singular distribution onto the lattice of course
implies some smoothing. Importantly, however, there is a
numerically optimal way to do this, which we adopt. The
result is a systematic procedure for representating general
force densities, having smooth and/or singular components,
within the lattice Boltzmann formulation of hydrodynamics.

Since the LBE works with molecular velocity distribution
functions at a mesoscopic scale, it is important to recognize
what our singular force densities physically describe. They
do not describe forces applied to a single fluid molecule, but
instead represent forces localized within a region large com-
pared to the molecular scale, but too small for the lattice to
resolve. This representation is particularly useful for dilute
colloids: these are pointlike on the scale of their separation,
but if each such colloid is fully resolved �occupying several
lattice cells� this separation becomes large on the lattice
scale, so that the number of particles that can be simulated in
practice is quite limited. Shrinking the colloids to a sublattice
scale, and interpolating the resulting point forces optimally,
allows a far higher number of colloids to be simulated be-
cause the mean spacing between particles can be of the order
of one lattice site even for volume fractions of 1% or less.
Such dilute colloids, when undergoing sedimentation, show
many interesting features that apparently involve structuring
of the system on scales much larger than the interparticle
spacing �12�. As shown by the benchmark tests described
below, our method promises accurate and efficient simulation
on such scales, which may in future assist exploration of
such physics.

In the following section we first discuss the discrete rep-
resentation of the forcing term in the Boltzmann equation
and derive a second-order accurate integration scheme for
the discrete velocity forced Boltzmann equation using the
method of characteristics. In Sec. III we introduce a general
distribution of singular forces and using a suitable regular-
ization of the � function obtain a smooth but sharply peaked
distribution of forces. The method is exemplified in Sec. III
for three common singular force distributions �a Stokeslet, a
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stresslet, and a rotlet� and validated for the Stokeslet case by
comparison with a fully resolved numerical simulation. Fi-
nally, we show how our method can be adapted to provide a
simplified description of a dilute suspension of sedimenting
colloids. We end with a summary of our method and discuss
potential applications.

II. MULTIPLE-RELAXATION-TIME FORCED LATTICE
BOLTZMANN EQUATION

The LBE may be derived from the Boltzmann equation by
a two-step procedure. First, a discrete-velocity Boltzmann
equation �DVBE� is obtained by retaining a finite number of
terms in the Hermite expansion of the Boltzmann equation
and evaluating the integrals corresponding to the conserved
moments using a Gauss quadrature �13–15�; see also �16,17�.
The discrete velocities �ci� are the nodes of the Gauss-
Hermite quadrature. This is followed by a discretization in
space and time to provide a numerical integration scheme,
which is commonly called the LBE �18�.

Usually a first-order explicit Euler scheme is used to in-
tegrate the DVBE, which surprisingly enough, gives second-
order accurate results �18,19�. This is so because the discreti-
zation error has the same structure as the viscous term in the
Navier-Stokes equation, whereby it can be absorbed by a
simple redefinition of the viscosity to give second-order ac-
curacy. The same Euler scheme for the forced Boltzmann
equation gives a discretization error term which can be ab-
sorbed only by redefining physical quantities like the mo-
mentum and stress �20�. Below, we provide a straightforward
explanation of these redefinitions and show how they are
related to the discretization error induced by the integration
scheme.

We begin with the discrete velocity Boltzmann equation
including an external acceleration field F�x , t�

�t f i + ci · �f i + �F · �cf�i = − Lij�f j − f j
0� , �1�

where f i�x , t� is the one-particle distribution function in
phase space of coordinates x and velocities ci, Lij is the
collision matrix linearized about the local equilibrium f i

0, and
the repeated index j is summed over. Mass and momentum
conservation require the collision term to satisfy

�
i=0

n

Lij�f j − f j
0� = 0, �

i=0

n

Lij�f j − f j
0�ci = 0 , �2�

while isotropy requires that the Lij depend only on the angles
between ci and c j �1�. Equation �1� is most easily derived by
expanding the distribution functions in terms of tensor Her-
mite polynomials, truncating the expansion at a certain order,
and evaluating the expansion coefficients using a Gaussian
quadrature �21�. In d dimensions, the quadrature is defined
by the n discrete velocities ci and a set of weights wi giving
rise to a DdQn discrete Boltzmann equation �22�. Retaining
terms up to second order in the Hermite expansion is suffi-
cient for isothermal fluid flow problems. The equilibrium
distribution functions to second order in the Hermite expan-
sions are

f i
0��,v� = wi�� +

�v · ci

cs
2 +

�vv:Qi

2cs
4 	 , �3�

where the tensor Qi��
ci�ci�−cs
2��� �where Greek indices

denote Cartesian directions� and cs is the speed of sound. The
mass density � and the momentum density �v are moments
of the distribution function:

� = �
i=0

n

f i, �v = �
i=0

n

f ici. �4�

To the same order, the discrete representation of the forcing
term is given by �23�

�F · �cf�i = − �wi�F · ci

cs
2 +

�vF + Fv�:Qi

2cs
4 	 
 − �i�x,t� .

�5�

This differs from the expression assumed in �24� �their Eq.
�6��, which is not consistently second order in the Hermite
expansion. Finally, the deviatoric momentum flux tensor

S�� = ��� − �cs
2��� = �

i=0

n

f iQi�� �6�

is the second moment of the distribution function. In isother-
mal models, the higher moments represent nonconserved ki-
netic degrees of freedom, commonly known as ghost modes.
In the hydrodynamic limit, Eq. �1� gives rise to Navier-
Stokes behavior, described by

���tv + v · �v� = − �p + ��2v + 	 � �� · v� + F , �7�

where the pressure obeys p=�cs
2, and the shear viscosity �

and the bulk viscosity 	 are related to the eigenvalues of Lij.
In practice, the algorithm is normally used in a parameter
regime where the fluid is nearly incompressible �� ·v�0�.

To begin our derivation of the numerical scheme we rear-
range Eq. �1� to obtain

�t f i + ci · �f i = Ri�x,t� , �8�

where Ri�x , t�=−Lij�f j�x , t�− f j
0�x , t��+�i�x , t� represents the

effects of both collisions and forcing. Equation �8� represents
a set of first-order hyperbolic equations and can be integrated
using the method of characteristics �25�. Integrating over a
time interval 
t we have

f i�x + ci
t,t + 
t� − f i�x,t� = �
0


t

ds Ri�x + cis,t + s� . �9�

The integral above may be approximated to second-order
accuracy using the trapezium rule and the resulting terms
transposed to give a set of implicit equations for the f i:

f i�x + ci
t,t + 
t� −

t

2
Ri�x + ci
t,t + 
t�

= f i�x,t� −

t

2
Ri�x,t� + 
tRi�x,t� . �10�

The structure of the above set of equations suggests the in-
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troduction of a new set of auxiliary distribution functions
�3,26�

f̄ i�x,t� = f i�x,t� −

t

2
Ri�x,t� , �11�

in terms of which the previous set of equations are explicit,

f̄ i�x + ci
t,t + 
t� = f̄ i�x,t� + Ri�x,t�
t . �12�

This shows that the LBE evolution can be thought of as
two separate processes: the first is a relaxational step in

which the distributions f̄ i are relaxed to their “postcolli-

sional” values f̄ i�x , t*�,

f̄ i�x,t*� = f̄ i�x,t� + Ri�x,t�
t , �13�

followed by a propagation step in which the postcollisional
distributions are propagated along a Lagrangian trajectory
without further change,

f̄ i�x + ci
t,t + 
t� = f̄ i�x,t*� . �14�

Thus the computational part of the method is most naturally

framed in terms of the auxiliary distributions f̄ i and not the
physical distribution functions f i themselves. To obtain the

postcollisional f̄ i without having to refer to the f i, the latter
must be eliminated from Eq. �12�. Inverting the equations

defining the f̄ i in Eq. �11�, we obtain

Ri = �1 +

t

2
L	

ij

−1

�− L jk� f̄ k − fk
0� + � j�x,t�� . �15�

Combining this with Eq. �12� we obtain a numerical scheme
for the forced discrete Boltzmann equation with a general

collision operator in terms of the f̄ i:

f̄ i�x + ci
t,t + 
t� = f̄ i�x,t� + �1 +

t

2
L	

ij

−1

��− L jk� f̄ k − fk
0� + � j�x,t�� . �16�

For a single-relaxation-time collision operator, where Lij
=�ij /�, this takes on a particularly simple form,

f̄ i�x + ci
t,t + 
t� = f̄ i�x,t� +

t

� + 
t/2
�− � f̄ i − f i

0� + ��i�x,t�� ,

�17�

a result obtained previously by a multiscale expansion of the
LBE dynamics �27�. For a nondiagonal collision operator,
the collision term is best evaluated in the moment basis. For
example, using a collision operator in which the ghost modes
are projected out and the stress modes relax at a rate �−1, the

postcollisional f̄ i �i.e., the right-hand side of Eq. �16�� is
given by

f̄ i�x,t*� = wi�� +
A�ci�

cs
2 +

B��Qi��

2cs
4 	 , �18�

where A�, the momentum component of the postcollisional
auxiliary distributions, is

A� = �
i=0

n

f̄ ici� + �F�
t , �19�

and B��, the stress component, is

B�� = �
i=0

n

f̄ iQi�� +

t

� + 
t/2��
i=0

n

f̄ iQi�� − �v�v�

+ ��v�F� + F�v��	 . �20�

The hydrodynamic variables are moments of the physical
distribution f i, but can easily be obtained from the auxiliary

distributions f̄ i used in the computation, using the transfor-
mation rule Eq. �11�, the definitions of the macroscopic vari-
ables, Eq. �4�, and the constraints of mass and momentum
conservation, Eq. �2�. We obtain

� = �
i=0

n

f̄ i, �21a�

�v� = �
i=0

n

f̄ ici� + �F�


t

2
, �21b�

S�� = �
i=0

n

f̄ iQi�� +

t/2

� + 
t/2��
i=0

n

f̄ iQi�� − �v�v�

+ ��v�F� + F�v��	 . �21c�

The equilibria can be reconstructed from � and �v. What
appear in the literature as redefinitions of momentum and
stresses are shown in the above analysis to be discretization
errors which vanish as 
t→0. This completes the descrip-
tion of the method for the numerical solution of the forced
LBE. Verberg and Ladd have derived results equivalent to
those above using a multiple scale analysis of the discrete
LBE dynamics �20�, but it is not clear to us whether their
analysis admits singular force densities. However, the above
derivation shows that these equations are a reliable starting
point, independent of Verberg and Ladd’s analysis.

The LBE can be extended to situations where the fluctua-
tions in the fluid density and momentum are important �6�. A
consistent discrete kinetic theory of fluctuations was pre-
sented in �28�, which improves on an earlier algorithm due to
Ladd �6�, and produces thermodynamically accurate vari-
ances of the local mass and momentum densities. We return
to the issue of noise below, when we address the representa-
tion of Brownian colloids as point particles �Sec. IV�.

III. SINGULAR FORCE DENSITIES

In a wide variety of situations, as mentioned in the Intro-
duction, force densities may need to be defined off lattice,
and may in addition be singular. Mathematically, such a
force density may be written as
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F�r� =� f�R���r − R�d , �22�

where the force is localized to some manifold described
parametrically as r=R��, and d is the measure on the
manifold. Any numerical method that attempts to deal with
such force distributions must be reconciled with the singular
nature of the force and, for grid-based numerical methods,
the fact that the position of the manifold need not coincide
with the nodes of the grid. In a well-established numerical
method �29�, the Dirac � function in the singular force dis-
tribution is replaced by a regularized � function, which leads
to a smooth distribution of forces. Necessarily, this implies
that the force is now no longer localized on the manifold but
is sharply peaked and smooth around it. This smooth force
density can now be sampled on the grid using the discretized
� function as an interpolant. Thus a representation of Eq.
�22� on the grid is obtained from

F�r� = �
a

f�Ra��P�r − Ra� . �23�

The crucial ingredient here is the kernel function �P, which
is a representation of the Dirac � function regularized on the
grid. We have followed closely the method described by
Peskin �29� where a regularized approximation to the Dirac �
function with compact support is derived:

�P�r� =
1

h3 f� x

h
	 f� y

h
	 f� z

h
	 , �24�

where h=
x=
y=
z is the lattice spacing and f�r� is given
by

f�r� =
3 − 2�r� + �1 + 4�r� − 4r2

8
, �r� � 1,

5 − 2�r� − �− 7 + 12�r� − 4r2

8
, 1 � �r� � 2,

0, �r� � 2.
�

�25�

This form is motivated by the need to preserve the funda-
mental properties of the Dirac � function on the grid �29�. A
simple closed form approximation to �P which is useful for
analytical work is

f̃�r� = 1

4
�1 + cos��r

2
	� , �r� � 2,

0, �r� � 2,
� �26�

whose Fourier transform is given by

f̃�k� = sinc4�k +
1

2
sinc�4�k − �� +

1

2
sinc�4�k + �� .

�27�

In this work we combine Eq. �22� directly with the numerical
method described in the previous section, giving a well-
defined method for incorporating singular and/or off-lattice
force densities into the lattice Boltzmann hydrodynamics.

A. Validation

To validate the method, we compare analytical solutions
of the singularly forced Navier-Stokes equation against our
numerical solutions, using lattice units 
x=
t=1, �=1. The
most straightforward benchmark is against the initial value
problem for the Stokes limit,

�tv = − �p + ��2v + F�r� , �28�

where the nonlinearity has been discarded, incompressibility
is assumed, and F�r�=F0��r−R0�. In an infinite system, the
solution is obtained in terms of the unsteady Oseen tensor
describing the diffusion of vorticity �30�. In a system with
periodic boundary conditions, the Oseen solution must be
replaced by the Hasimoto solution �31�. In contrast to the
Oseen solution, the real-space Hasimoto solution is not avail-
able in a simple closed form but must be evaluated numeri-
cally. However, the solution in Fourier variables presents no
such difficulty, and is in fact identical in both cases:

v�k,t� =
1 − e−�k2t

�k2 �1 − k̂k̂� · F�k� . �29�

Thus, we find it most convenient to compare Fourier modes
of the velocity from the numerical solution against the solu-
tion above. In particular, this provides a neat way to evaluate
the performance of the method at different length scales. In
Fig. 1 we compare the numerical data �points� to the theo-
retical result for a regularized force monopole using the ap-
proximation to the Peskin � function, Eq. �27� �solid line�.

The results show excellent agreement with the theoretical
curve for low-k modes, where we expect the momentum to
behave hydrodynamically. The departure from hydrodynamic
behavior increases progressively with the wave number, as
expected from previous studies on the hydrodynamic behav-
ior of the LBE �32�. However, there is a significant range of
length scales over which our model reproduces hydrody-
namic behavior, which is not less than the scale over which
hydrodynamic behavior is obtained in the unforced LBE
�33�.

By combining elementary monopoles, discrete representa-
tions of higher multipoles can be generated. For example, the
discrete Stokes doublet, a dipole of two point forces, can be

0000
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0.40.40.40.4

0.60.60.60.6

0.80.80.80.8

1111

0 2 4 6 8 100 2 4 6 8 100 2 4 6 8 100 2 4 6 8 10

vvvv
zzzz
ηηηη

kkkk
2222
////

˜̃̃̃ ffff((((
kkkk
))))

ttttηηηηkkkk2222

FIG. 1. �Color online� Relaxation of the solenoidal component
of the velocity due to a � function forcing. The simulations were
performed on a 643 lattice. Shown are the first eight �upper curves�,
the 16th �middle curve�, and the 31st �lowest curve� Fourier modes
of the velocity field. The solid line is the analytical result, Eq. �29�.

NASH, ADHIKARI, AND CATES PHYSICAL REVIEW E 77, 026709 �2008�

026709-4



constructed out of monopoles of magnitude F and separation
a and is often used as a simplified representation of a neu-
trally buoyant, steadily moving self-propelled particle. In
Figs. 2�a� and 2�b�, we compare the velocity response of
such a dipole to theoretical predictions, finding good agree-
ment away from the immediate vicinity of the forces. In Fig.
3, we show a velocity field plot for the antisymmetric force
dipole, or rotlet, which may be used as a representation of an
object which rotates due to an external torque. This requires
the use of four, rather than two, point forces; we arrange
these in a swastikalike fashion �whose axes can be aligned in
an arbitrary direction without significantly affecting the flow
produced�. This cancels a spurious stresslet component that
arises from our regularization of the � function for any di-
pole in which the forces are not collinear with the separation
vector.

The above examples show that the regularized � function
provides a useful way of incorporating arbitrary distributions
of singular forces into the lattice Boltzmann method, capable
of dealing with internal as well as external forcing.

IV. A STOKESLET MODEL FOR DILUTE COLLOIDS

The dynamics in a dilute sedimenting suspension, despite
a century of investigation, still presents open questions �20�.
The problem, even for a hard-sphere suspension, is unusually
difficult due to the long-ranged, many-body nature of the
hydrodynamic interaction. Moreover, the flow can develop
structural features at large length scales, and the role of in-
ertia, while usually negligible at the particle scale, may be
significant at those scales �34�. The Stokes approximation of
globally vanishing Reynolds number cannot thus be justified
a priori in a sedimenting suspension. The full hydrodynamic
problem including inertia for both fluid and particles was
first simulated by Ladd using a novel lattice Boltzmann �LB�
method �35�. This method, though possibly the most com-
petitive for fully resolved particles, remains computationally
expensive. A considerable simplification of the hydrodynam-
ics is possible if only the lowest-order multipole of the force
distribution induced on the particle surface by the no-slip
boundary condition is retained. This principle was exploited
previously to develop representations of polymers as strings
of point particles which were then coupled to an LB fluid
�5,36�. A similar idea has been used �37,38� to represent
resolved colloids with a mesh of point particles covering
their surfaces, and in related representations of spherical and
aspherical colloids via immersed boundary techniques
�39–43�. However, in the current work we simplify further,
treating each colloid as a single point particle �thereby sac-
rificing all near-field effects�. The possible efficiency gains
from this approach are considered in Sec. V below.

In the colloidal context, this type of model was first intro-
duced by Saffman �11�; the finite-sized particles are replaced
by a singular force monopole, the Stokeslet, located at the

-2-2-2-2

-1-1-1-1

0000

1111

2222

-10 -5 0 5 10-10 -5 0 5 10-10 -5 0 5 10-10 -5 0 5 10

vvvv
zzzz
////

vvvv
cccc

zzzz (lattice units)(lattice units)(lattice units)(lattice units)

d = 0.71d = 0.71d = 0.71d = 0.71
d = 3.54d = 3.54d = 3.54d = 3.54
d = 6.36d = 6.36d = 6.36d = 6.36

(a)(a)(a)(a)

(b)(b)(b)(b)

FIG. 2. �Color online� Velocity around a symmetric point-force
dipole, normalized by a characteristic speed for that distance from
the dipole, vc
Fa /8��r2. �a� shows velocity along lines parallel to
the forces, at several separations. Points are simulation results, lines
theoretical predictions with no free parameters. In �b�, the upper
half shows the simulated velocity field. The lower half shows
isosurfaces of the magnitude of the velocity difference between
simulation and theory at values of 25% and 50%. The coloring
�online� depends upon the magnitude of the difference field and is
shown as a percentage of vc in the color bar. The force dipole is
oriented vertically and positioned in the center of the volume.

FIG. 3. �Color online� Velocity field around a regularized rotlet,
normalized by vc �see Fig. 2�. Upper half: simulated velocity field.
Lower half: isosurfaces of the magnitude of the velocity difference
between simulation and theory. Isosurfaces are at values of 12.5%,
25%, and 37.5%. The coloring �online� depends upon the magni-
tude of the difference field and is shown as a percentage of vc in the
color bar. The rotlet is oriented with the forces in a horizontal plane
and positioned in the center of the volume.
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nominal center of the particle. In Saffman’s original model,
both the fluid and the particles have no inertia. In keeping
with the comments above, our model retains inertia for the
fluid, while neglecting it for the particle and for hydrody-
namics at the particle scale. We thus have a momentum bal-
ance equation,

��tv = − �p + ��2v + �
s

Fs��r − Rs� , �30�

where the sum includes contributions from the s=1, . . . ,N
particles located at Rs and acted upon by external forces Fs.
In the absence of particle inertia accelerations vanish, and the
particle coordinates are updated directly using the first Faxén
relation �44�,

Ṙs = v��Rs� +
Fs

6��a
, �31�

which relates the center of mass velocity of the particle Ṙs to
the external force on it, Fs. The background velocity v��Rs�
is the fluid velocity at the location Rs in the absence of the
sth particle. The above two equations provide a complete
specification of a model of sedimenting spheres, valid in the
dilute limit, for dynamics at long wavelengths.

The lattice Boltzmann implementation of this model pro-
ceeds by first replacing the Dirac � function with the regu-
larized � functions to obtain a force density at the grid points
F�r�=�sFs�

P�r−Rs�. Since the LBE evolves the total fluid
velocity v�r� due to all particles, the background fluid veloc-
ity v� must be obtained by a careful subtraction procedure.
In the absence of fluid inertia at the particle scale this can be
accomplished as follows. By definition, the fluid velocity at a
node v�r� is the sum of the background velocity at the node
v��r� and the velocity due to the sth Stokeslet located at Rs,
v�r�=v��r�+vs�r ,Rs�. The background velocity field at the
location of the particle can be obtained using the same inter-
polation kernel as used for the force, v��Rs�=�rv

��r��P�Rs

−r�, and using the previous relation can be written as

v��Rs� = v�Rs� − �
r

vs�r,Rs��P�Rs − r� . �32�

Appealing only to linearity and dimensional analysis, the
sum above can be expressed as

�
r

vs�r,Rs��P�Rs − r� 

Fs

6��aL�Rs�
. �33�

In Appendix A, we derive this result and show that the lattice
parameter aL depends only on the system size L and on the
form of the regularization and interpolation kernels; it is in-
dependent of viscosity � and of the radius a. Using Eq. �33�,
the update equation for the Stokeslet positions can now be
expressed in terms of the interpolated fluid velocity, without
any reference to the background velocity,

Ṙs = v�Rs� +
Fs

6��
�1

a
−

1

aL�Rs�
	 . �34�

Notice that replacing the background velocity in the Faxén
relation with the actual fluid velocity induces an effective

backflow, leading to a renormalized hydrodynamic radius,

1

aR
=

1

a
−

1

aL
. �35�

The numerics thus places a constraint a�aL on the allowed
values of the hydrodynamic radius a. This numerical con-
straint encodes the condition that the grid points must be in
the far field of the Stokeslet, the limit in which the back-
ground velocity can be obtained from the fluid velocity by
subtracting a monopole contribution. In our simulations, we
operate well within this limit.

This almost completes the description of the lattice Bolt-
zmann implementation of our Stokeslet model of sediment-
ing particles. The only free parameter is the hydrodynamic
radius a of the particles, which decides how fast they sedi-
ment for a given force Fs. As shown below, the lattice pa-
rameter aL can be calculated analytically as a function of
system size. We find it convenient to fit it using a procedure
described in Appendix A. Finally, to address Brownian mo-
tion of our colloids, we need to use the fluctuating LBE of
�28� which imparts an appropriate thermal noise spectrum to
the fluid. Because of the renormalization of a, the resulting
diffusivity is generally not correct unless a further noise term
is added that is the counterpart of the aL correction. The
details are explained in Appendix B.

A. Benchmarks

Our first benchmark addresses the dynamics of a single
impulsively started particle, without noise. From unsteady
hydrodynamics, we know that the asymptotic decay of the
particle velocity varies as t−d/2 in d dimensions �30�. In Fig. 4
we display the decay of the particle velocity, for a single
hydrodynamic radius �0.05 lattice units�, but several values
of the fluid viscosity. In all cases, we see the correct
asymptotic behavior, until the particle begins to interact with
its image, due to the periodic boundary conditions. �This
interpretation is supported by the scaling of the time � at
which the deviations become significant: we find ��L2 /� as
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FIG. 4. �Color online� Response of a single particle to an im-
pulsive force P in a periodic box. Main figure: response shown for
a range of viscosities �points� compared to the theoretical prediction
v=P /12����t�3/2 at long times �30�. The inset shows the effect of
varying the size of the simulation box. Deviations from the predic-
tion become significant at approximately 250, 1000, and 4000 time
steps for box sizes of 32, 64, and 128, respectively. This is consis-
tent with the expected scaling, ��L2 /�.
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shown in the inset to Fig. 4.� In other words, our particle
model correctly captures the low- and intermediate-
frequency behavior of the particle mobility, but cannot cap-
ture the high-frequency behavior correctly, since that de-
pends on the way vorticity diffuses in the immediate
neighborhood of the particle, a regime that is excluded in our
model.

Our next benchmark involves collective motion of a set of
particles, and thus directly probes the hydrodynamic interac-
tion between particles. In Fig. 5 the mean sedimentation ve-
locity of a periodic array of spheres is shown, as a function
of volume fraction. There is excellent agreement with the
theoretical result of �45�. The model is also able to faithfully
capture instabilities due to collective hydrodynamic flow. In
Fig. 6 the instability of a falling two-dimensional lattice of
spheres in three dimensions �46� is captured, at least quali-
tatively, by our model.

For most problems, all Reynolds numbers below some
�situation-dependent but small� value give rise to equivalent
behavior, as discussed in detail in previous work �47�. Fol-
lowing protocols discussed there, we have compared the nor-
malized velocity field u=v /v0 �with v0 the sedimentation
velocity of an isolated colloid� for a number of simulations
of a single sedimenting sphere with periodic boundary con-
ditions �see Fig. 7� in order to explore the range of Reynolds
number at which our algorithm gives acceptably accurate
results. Our “reference” simulation has a very small Re
=10−6 such that we can be confident it is in the Stokesian
limit �47�. This is shown in Fig. 7�a�. Figures 7�b� and 7�c�
show the normalized velocity difference fields between the
reference case and simulations with Re=10−4 and 10−2, re-
spectively. In the simulation with Re=10−4, the magnitude of
the difference is everywhere less than 2�10−5, a negligibly
small error. In the simulation with Re=10−2, we find �
u�
�0.01 throughout the bulk of the domain; only in the imme-
diate vicinity of the particle does it become larger. This sug-
gests that this Reynolds number is sufficiently low to give
“realistic,” although not “fully realistic,” behavior �47�.
Since reaching very low Reynolds number requires paying a
larger cost in computational time, and there are other sources
of percent-level error in the code, Re=10−2 is probably a
reasonable compromise between accuracy and run time, for
studies in the low-Reynolds-number limit.

B. Comparison to a fully resolved LB algorithm

As a final benchmark, we have compared the behavior of
our sedimenting particle model with a fully resolved colloid
simulation code using the algorithm of Nguyen and Ladd

0.950.950.950.95

0.960.960.960.96

0.970.970.970.97

0.980.980.980.98

0.990.990.990.99

1111

0 500 1000 1500 2000 2500 30000 500 1000 1500 2000 2500 30000 500 1000 1500 2000 2500 30000 500 1000 1500 2000 2500 3000

vvvv
ssss

(u
ni

ts
of

(u
ni

ts
of

(u
ni

ts
of

(u
ni

ts
of

vvvv
0000))))

LLLL (units of(units of(units of(units of aaaa))))

FIG. 5. �Color online� Steady sedimentation velocity of a simple
cubic array of spheres, normalized by the Stokes sedimentation ve-
locity of a single particle, v0. The separation L is expressed in terms
of the fitted particle radius a. The solid line is the theoretical result
v=v0 / �1+ka /L�, with k=2.84 �31,45�.

(b)

(a)

(c)

FIG. 6. Crowley instability of a two-dimensional lattice of sedi-
menting particles. Images are generated in the comoving frame and
particle size has been exaggerated for illustrative purposes. Images
taken at times of t= �a� 0tSt, �b� 1650tSt, and �c� 3300tSt.
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�48�. �For full implementation details, see �49�.� At dilute
concentrations, the paths of the particles are almost indistin-
guishable between the two simulations when plotted graphi-
cally. This is shown in Fig. 8 for volume fraction �=3.0
�10−3; note that the largest differences occur when the den-
sity of particles is large locally, when the implicit assumption
of our model that the particles are always at separations large
compared to their radius is no longer valid. We cannot expect
both simulations to give the same trajectories for long times,
since the small differences between algorithms will cause
exponential separation of trajectories owing to the positive
Lyapunov exponent of the system. However, from a plot of
the mean difference in position between the two simulations
against time, we can see excellent agreement for several
Stokes times, and until at least ten Stokes times for suffi-
ciently dilute systems �Fig. 9�.

V. DISCUSSION

The focus of this work has been to derive and validate a
general method for addressing singular forcing in the LBE,
with specific application to the simulation of pointlike par-
ticles. We have shown the method to agree well with analytic
results, where available, and with fully resolved particle al-
gorithms at low concentrations and Reynolds number �Secs.
III A, IV A, and IV B�.

(b)

(a)

(c)

FIG. 7. Contour plots of �a� the normalized velocity field u for
a reference simulation at very low Re=10−6; and velocity difference
fields for Re= �b�10−4 and �c� 10−2. These are for a pointlike colloid
sedimenting in a 323 box with periodic boundary conditions. Ref-
erence case: contour interval 0.02v0. Re=10−4 case: contour inter-
val 5�10−6. Re=10−2 case: contour interval 5�10−3.

FIG. 8. �Color online� Both visualizations show the particles at
their position in the point-particle simulation after ten Stokes times.
Left: lines show the trajectories from the starting configuration.
Right: lines show the difference between fully resolved and
pointlike algorithms. Parameters for the two systems are shown in
Table I. See also Movie 1 �50�.
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FIG. 9. �Color online� Main figure: mean absolute difference in
position between fully resolved and pointlike sedimenting particles.
Inset: mean absolute difference in velocity between the two simu-
lations. Parameters for the two systems are shown in Table I.
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Additionally, due to its careful construction, the regular-
ized � function provides a good interpolation scheme, mini-
mizing velocity fluctuations as the particle moves relative to
the computational grid. Indeed, we find that for sedimenting
colloids, the trajectories are much smoother in our Stokeslet
algorithm than for the fully resolved simulation. In the latter,
the discretization renders particles hydrodynamically as-
pherical with shapes that vary as they move across the lattice
�49�.

Other approaches to adding particles can also reduce the
errors due to shape changes as the particles move, for ex-
ample the immersed-boundary–lattice-Boltzmann method
�39–43�, LBM for immiscible liquids �51�, or finite-
difference methods coupled to Stokes equation solutions near
the particle �52�. These methods can also deal with aspheri-
cal and/or deformable colloidal particles. However, they all
involve fully resolving the particle boundaries and thus re-
quire particle radii at least as big as in Ladd’s algorithm: for
a given number and concentration of particles, they should
therefore require comparable computational effort �which is
dominated in practice by the LBE sector for the bulk fluid�.
In contrast, with our point-particle algorithm, as shown in
Table I, similar particle numbers and volume fractions can be
simulated with a LB lattice that is smaller in linear dimen-
sion by a factor �10. �This is the ratio of the particle radii
in the two simulations.� The computational time to update
the particle positions is essentially negligible, so that the
CPU time needed to perform one LB time step is decreased
by a factor of 3; moreover, the Stokes time �S=�a2 /�Re
scales as 2. The latter sets the time basic time scale for
evolution of sedimentation trajectories, so that for this prob-
lem we expect a speedup of O�5��105. This should allow
us to study the sedimentation behavior of dilute systems with
tens of millions of particles. This scaling to very large sys-
tems should allow us to accurately determine the long-
wavelength particle structure factor, which is a quantity of
great theoretical interest �12�. This structure factor deter-
mines the ultimate character of the sedimentation dynamics,
which depends on how particles become correlated over
length scales large compared to their mean separation. Even
the largest fully resolved LB simulations �53� currently have
difficulty addressing this regime, which we hope to address
in future work using our method.

Generalizations of our algorithm to more complicated, but
still pointlike, objects should prove relatively straightfor-

ward. By calculating the coefficients of higher-order multi-
poles, the force distribution for objects such as nonspherical
or self-propelled particles �e.g., motile bacteria� might be
included within the framework of pointlike objects. To simu-
late polymeric structures, one might make the driving force
on each particle the sum of bonding interactions between it
and its neighbors. Further, the accuracy of our Stokeslet
model can be increased by including higher-order terms of
the surface force distribution. In particular, a second-order
�Rotne-Prager� term could improve accuracy for colloids,
and with some geometries and/or boundary conditions might
prove important, even in the dilute limit �54,55�. However,
our comparisons with the resolved particle simulations sug-
gest that this term is not crucial under the conditions we have
studied.

Although the aforementioned methods �6,39–43,51,52�
have a larger domain of applicability than our code, particu-
larly for situations with high volume fractions and finite par-
ticle Reynolds number, in the limit of dilute suspensions
when only low-order multipoles are significant, our approach
might prove preferable, even for aspherical particles, due to
its much greater computational efficiency. We note that spec-
tral methods offer another approach to include point forces in
fluid simulations �55�; however, they require a different
Green’s function for each different boundary condition and
are restricted to relatively simple geometries. As with all
LBE-based codes, the absence of such restrictions is an at-
tractive feature of our approach.
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APPENDIX A: SUBTRACTION PROCEDURE

We derive here the correction factor that arises from re-
placing the background velocity with the fluid velocity in the
Faxén relation. The velocity at a node due to a regularized
Stokeslet located at Rs is

vs�r,Rs� =
1

L3 �
k�0

eik·r

�k2 �P�k;Rs��1 − k̂k̂� · Fs. �A1�

This velocity interpolated from the neighboring nodes to the
location of the particle is

�
r

vs�r,Rs��P�r − Rs� = Fs · �
r,k�0

eik·r

�k2

�P�k;Rs�
L3

��1 − k̂k̂��P�r − Rs� . �A2�

Completing the spatial sum, we get for the interpolated
Stokeslet velocity

TABLE I. Parameters for simulations used to compare fully re-
solved and pointlike algorithms; see text and Figs. 8 and 9.

Parameter Fully resolved Point particle

Lattice size L 96 9

Particle radius a 1.25 0.117

Viscosity � 1 /6 1 /6

Density � 1.0 1.0

Reynolds number Re 0.01 0.01

Stokes time �S 937 8

Number of particles 321 321

Volume fraction � 3.0�10−3 3.0�10−3
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�
r

vs�r,Rs��P�r − Rs� = Fs · �
k�0

��P�k;Rs��2

�k2 �1 − k̂k̂�



Fs

6��aL�Rs�
, �A3�

which shows that the offset parameter aL obeys

1

aL�Rs�
=

6�

L3 �
k�0

��P�k;Rs��2

k2 �1 − k̂k̂�; �A4�

it is indeed independent of viscosity and particle radius a, but
depends on the lattice size L and the numerical implementa-
tion of the regularization and interpolation.

APPENDIX B: NOISE

Considering a spherical sedimenting particle in the
Langevin picture, we can write

mR̈ = − 6��a�Ṙ − v�� + F + 	�t� , �B1�

and taking the inertialess limit gives

Ṙ = v��R� +
F

6��a
+ 	�t� . �B2�

We note that, in this equation, noise comes in only through
the Gaussian random variable 	 and that in particular the
fluid velocity v� is completely deterministic.

The update rule for our model particle is

Ṙ = v�R� −
F

6��aL
+

F

6��a
, �B3�

which is sufficient for the infinite-Péclet-number regime. If
one uses a fluctuating LB method, then the interpolated ve-
locity v�R� contains a noise component. However, we do not

expect the magnitude of the noise to be appropriate for a
particle of the desired radius a, since the random component
of the velocity has no dependence on the radius of the par-
ticle. In fact, the variance of this noise is that expected for a
Brownian particle with the same radius as the offset param-
eter aL ��a�, and we use this fact to determine its value from
a diffusion “experiment” on an unforced particle, as ex-
plained below.

Knowing that the particle will otherwise diffuse as one
with a much larger radius, we add a white noise term to the
update rule for the model,

Ṙ = v�R� −
F

6��aL
+

F

6��a
+ 	��t� . �B4�

The variance of the extra noise is determined by the require-
ment of satisfying the fluctuation-dissipation theorem to be

�	i��t�	 j��t��� =
kT

3��
�1

a
−

1

aL
	�ij��t − t�� . �B5�

To determine the value of the offset parameter aL, we set
up a simulation of a single unforced particle in periodic
boundary conditions at finite temperature and disable the ex-
tra noise term discussed above, giving

Ṙ = v�R� �B6�

as the equation of motion of the particle.
We let the simulation equilibrate for the characteristic

time for momentum to diffuse across the box size, TL2 /�,
before recording the displacement as a function of time. This
is repeated for a number of different starting positions rela-
tive to the LB grid, and a plot of �r2� vs t is used to estimate
the diffusivity. We then use the Stokes-Einstein relation to
derive a radius and use this as the offset parameter. We then
test to ensure that this gives the correct sedimentation behav-
ior of a particle.
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